

TradingBot’s documentation

Introduction

TradingBot is an autonomous trading system that uses customised strategies to
trade in the London Stock Exchange market.
This documentation provides an overview of the system, explaining how to create
new trading strategies and how to integrate them with TradingBot.
Explore the next sections for a detailed documentation of each module too.

	1. System Overview

	2. Modules

	3. Changelog

1. System Overview

TradingBot is a python program with the goal to automate the trading
of stocks in the London Stock Exchange market.
It is designed around the idea that to trade in the stock market
you need a strategy: a strategy is a set of rules that define the
conditions where to buy, sell or hold a certain market.
TradingBot design lets the user implement a custom strategy
without the trouble of developing all the boring stuff to make it work.

The following sections give an overview of the main components that compose
TradingBot.

1.1. TradingBot

TradingBot is the main entiy used to initialised all the
components that will be used during the main routine.
It reads the configuration file and the credentials file, it creates the
configured strategy instance, the broker interface and it handle the
processing of the markets with the active strategy.

1.2. Broker interface

TradingBot requires an interface with an executive broker in order to open
and close trades in the market.
The broker interface is initialised in the TradingBot module and
it should be independent from its underlying implementation.

At the current status, the only supported broker is IGIndex. This broker
provides a very good set of API to analyse the market and manage the account.
TradingBot makes also use of other 3rd party services to fetch market data such
as price snapshot or technical indicators.

1.3. Strategy

The Strategy is the core of the TradingBot system.
It is a generic template class that can be extended with custom functions to
execute trades according to the personalised strategy.

1.3.1. How to use your own strategy

Anyone can create a new strategy from scratch in a few simple steps.
With your own strategy you can define your own set of rules
to decide whether to buy, sell or hold a specific market.

	Setup your development environment (see README.md)

	Create a new python module inside the Strategy folder :

cd Strategies
touch my_strategy.py

	Edit the file and add a basic strategy template like the following:

import os
import inspect
import sys
import logging

Required for correct import path
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)

from Components.Broker import Interval
from .Strategy import Strategy
from Utility.Utils import Utils, TradeDirection
Import any other required module

class my_strategy(Strategy): # Extends Strategy module
 """
 Description of the strategy
 """
 def read_configuration(self, config):
 # Read from the config json and store config parameters
 pass

 def initialise(self):
 # Initialise the strategy
 pass

 def fetch_datapoints(self, market):
 """
 Fetch any required datapoints (historic prices, indicators, etc.).
 The object returned by this function is passed to the 'find_trade_signal()'
 function 'datapoints' argument
 """
 # As an example, this means the strategy needs 50 data point of
 # of past prices from the 1-hour chart of the market
 return self.broker.get_prices(market.epic, Interval.HOUR, 50)

 def find_trade_signal(self, market, prices):
 # Here is where you want to implement your own code!
 # The market instance provide information of the market to analyse while
 # the prices dictionary contains the required price datapoints
 # Returns the trade direction, stop level and limit level
 # As an examle:
 return TradeDirection.BUY, 90, 150

	Add the implementation for these functions:

	read_configuration: config is the json object loaded from the config.json file

	initialise: initialise the strategy or any internal members

	fetch_datapoints: fetch the required past price datapoints

	find_trade_signal: it is the core of your custom strategy, here you can use the broker interface to decide if trade the given epic

	Strategy parent class provides a Broker type internal member that
can be accessed with self.broker. This member is the TradingBot broker
interface and provide functions to fetch market data, historic prices and
technical indicators. See the Modules section for more details.

	Strategy parent class provides access to another internal member that
list the current open position for the configured account. Access it with
self.positions.

	Edit the StrategyFactory module inporting the new strategy and adding
its name to the StrategyNames enum. Then add it to the make function

	28
29
30
31
32
33
34
35
36

	 def make_strategy(self, strategy_name):
 if strategy_name == StrategyNames.SIMPLE_MACD.value:
 return SimpleMACD(self.config, self.broker)
 elif strategy_name == StrategyNames.FAIG.value:
 return FAIG_iqr(self.config, self.broker)
 elif strategy.name == StrateyNames.MY_STRATEGY.value:
 return MY_STRATEGY(self.config, self.broker)
 else:
 logging.error('Impossible to create strategy {}. It does not exist'.format(strategy_name))

	Edit the config.json adding a new section for your strategy parameters

	Create a unit test for your strategy

	Share your strategy creating a Pull Request :)

2. Modules

TradingBot is composed by different modules organised by their nature.
Each section of this document provide a description of the module meaning
along with the documentation of its internal members.

2.1. TradingBot

2.2. Components

The Components module contains the components that provides services
used by TradingBot.
The Broker class is the wrapper of all the trading services and provides
the main interface for the strategies to access market data and perform
trades.

2.2.1. IGInterface

2.2.1.1. Enums

2.2.2. AVInterface

2.2.2.1. Enums

2.2.3. Broker

2.2.3.1. Enums

2.2.4. MarketProvider

	
class Components.MarketProvider.MarketProvider(config, broker)

	Provide markets from different sources based on configuration. Supports
market lists, dynamic market exploration or watchlists

	
get_market_from_epic(epic)

	Given a market epic id returns the related market snapshot

	
next()

	Return the next market from the configured source

	
reset()

	Reset internal market pointer to the beginning

	
search_market(search)

	Tries to find the market which id matches the given search string.
If successful return the market snapshot.
Raise an exception when multiple markets match the search string

2.2.4.1. Enums

	
class Components.MarketProvider.MarketSource

	Available market sources: local file list, watch list, market navigation
through API, etc.

2.2.5. TimeProvider

2.2.5.1. Enums

2.3. Interfaces

The Interfaces module contains all the interfaces used to exchange
information between different TradingBot components.
The purpose of this module is have clear internal API and avoid integration
errors.

2.3.1. Market

	
class Interfaces.Market.Market

	Represent a tradable market with latest price information

2.4. Strategies

The Strategies module contains the strategies used by TradingBot to
analyse the markets. The Strategy class is the parent from where
any custom strategy must inherit from.
The other modules described here are strategies available in TradingBot.

2.4.1. Strategy

	
class Strategies.Strategy.Strategy(config, broker)

	Generic strategy template to use as a parent class for custom strategies.

	
backtest(market, start_date, end_date)

	Must override

	
fetch_datapoints(market)

	Must override

	
find_trade_signal(epic_id, prices)

	Must override

	
initialise()

	Must override

	
read_configuration(config)

	Must override

	
run(market)

	Run the strategy against the specified market

	
set_open_positions(positions)

	Set the account open positions

2.4.2. StrategyFactory

2.4.3. SimpleMACD

2.4.4. Weighted Average Peak Detection

2.5. Utils

Common utility classes and methods

2.5.1. Utils

	
class Utility.Utils.Utils

	Utility class containing static methods to perform simple general actions

	
static humanize_time(secs)

	Convert the given time (in seconds) into a readable format hh:mm:ss

	
static is_between(time, time_range)

	Return True if time is between the time_range. time must be a string.
time_range must be a tuple (a,b) where a and b are strings in format ‘HH:MM’

	
static midpoint(p1, p2)

	Return the midpoint

	
static percentage(part, whole)

	Return the percentage value of the part on the whole

	
static percentage_of(percent, whole)

	Return the value of the percentage on the whole

2.5.2. Enums

	
class Utility.Utils.TradeDirection

	Enumeration that represents the trade direction in the market: NONE means
no action to take.

2.5.3. Exceptions

	
class Utility.Utils.MarketClosedException

	Error to notify that the market is currently closed

	
class Utility.Utils.NotSafeToTradeException

	Error to notify that it is not safe to trade

3. Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

3.1. [1.2.0] - 2019-11-16

3.1.1. Added

	Added backtesting feature

	Created Components module

	Added TimeProvider module

	Added setup.py to handle installation

3.1.2. Changed

	Updated CI configuration to test the Docker image

	Updated the Docker image with TradingBot already installed

3.2. [1.1.0] - 2019-09-01

3.2.1. Changed

	Replaced bash script with python

	Moved sources in src installation folder

	Corrected IGInterface numpy dependency

	Added Pipenv integration

	Exported logic from Custom Strategy to simplify workflow

	Added dev-requirements.txt for retro compatibility

	Updated Sphinx documentation

3.3. [1.0.1] - 2019-05-09

3.3.1. Changed

	Updated renovate configuration

3.4. [1.0.0] - 2019-04-21

3.4.1. Added

	Initial release

 Python Module Index

 c |
 i |
 s |
 u

 		 	

 		
 c	

 	[image: -]
 	
 Components	

 	
 	
 Components.MarketProvider	

 		 	

 		
 i	

 	[image: -]
 	
 Interfaces	

 	
 	
 Interfaces.Market	

 		 	

 		
 s	

 	[image: -]
 	
 Strategies	

 	
 	
 Strategies.Strategy	

 		 	

 		
 u	

 	[image: -]
 	
 Utility	

 	
 	
 Utility.Utils	

Index

 B
 | C
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U

B

 	
 	backtest() (Strategies.Strategy.Strategy method)

C

 	
 	Components.MarketProvider (module)

F

 	
 	fetch_datapoints() (Strategies.Strategy.Strategy method)

 	
 	find_trade_signal() (Strategies.Strategy.Strategy method)

G

 	
 	get_market_from_epic() (Components.MarketProvider.MarketProvider method)

H

 	
 	humanize_time() (Utility.Utils.Utils static method)

I

 	
 	initialise() (Strategies.Strategy.Strategy method)

 	
 	Interfaces.Market (module)

 	is_between() (Utility.Utils.Utils static method)

M

 	
 	Market (class in Interfaces.Market)

 	MarketClosedException (class in Utility.Utils)

 	
 	MarketProvider (class in Components.MarketProvider)

 	MarketSource (class in Components.MarketProvider)

 	midpoint() (Utility.Utils.Utils static method)

N

 	
 	next() (Components.MarketProvider.MarketProvider method)

 	
 	NotSafeToTradeException (class in Utility.Utils)

P

 	
 	percentage() (Utility.Utils.Utils static method)

 	
 	percentage_of() (Utility.Utils.Utils static method)

R

 	
 	read_configuration() (Strategies.Strategy.Strategy method)

 	
 	reset() (Components.MarketProvider.MarketProvider method)

 	run() (Strategies.Strategy.Strategy method)

S

 	
 	search_market() (Components.MarketProvider.MarketProvider method)

 	set_open_positions() (Strategies.Strategy.Strategy method)

 	
 	Strategies.Strategy (module)

 	Strategy (class in Strategies.Strategy)

T

 	
 	TradeDirection (class in Utility.Utils)

U

 	
 	Utility.Utils (module)

 	
 	Utils (class in Utility.Utils)

 nav.xhtml

 Table of Contents

 		
 TradingBot’s documentation

 		
 System Overview

 		
 TradingBot

 		
 Broker interface

 		
 Strategy

 		
 How to use your own strategy

 		
 Modules

 		
 TradingBot

 		
 Components

 		
 IGInterface

 		
 AVInterface

 		
 Broker

 		
 MarketProvider

 		
 TimeProvider

 		
 Interfaces

 		
 Market

 		
 Strategies

 		
 Strategy

 		
 StrategyFactory

 		
 SimpleMACD

 		
 Weighted Average Peak Detection

 		
 Utils

 		
 Utils

 		
 Enums

 		
 Exceptions

 		
 Changelog

 		
 [1.2.0] - 2019-11-16

 		
 Added

 		
 Changed

 		
 [1.1.0] - 2019-09-01

 		
 Changed

 		
 [1.0.1] - 2019-05-09

 		
 Changed

 		
 [1.0.0] - 2019-04-21

 		
 Added

_static/plus.png

_static/file.png

_static/minus.png

