

TradingBot’s documentation

Introduction

TradingBot is an autonomous trading system that uses customised strategies to
trade in the London Stock Exchange market.
This documentation provides an overview of the system, explaining how to create
new trading strategies and how to integrate them with TradingBot.
Explore the next sections for a detailed documentation of each module too.

	1. System Overview
	1.1. TradingBot

	1.2. Broker interface

	1.3. Strategy

	2. Modules
	2.1. TradingBot

	2.2. Interfaces

	2.3. Strategies

	2.4. Utils

	3. Changelog
	3.1. [1.1.0] - 2019-09-01

	3.2. [1.0.1] - 2019-05-09

	3.3. [1.0.0] - 2019-04-21

TradingBot

[image: Build Status]
 [https://travis-ci.com/ilcardella/TradingBot][image: Documentation Status]
 [https://tradingbot.readthedocs.io/en/latest/?badge=latest]This is an attempt to create an autonomous market trading script using the IG
REST API and any other available data source for market prices.

TradingBot is meant to be a “forever running” process that keeps
analysing the markets and taking actions whether the conditions are met.
It is halfway from an academic project and a real useful piece of
software, I guess I will see how it goes :)

The main goal of this project is to provide the capability to
write a custom trading strategy with the minimum effort.
TradingBot handle all the boring stuff.

All the credits for the FAIG_iqr strategy goes to GitHub user @tg12
who is the creator of the first script version and gave me a good
starting point for this project. Thank you.

Dependencies

	Python 3.5+

	Pipenv

View file Pipfile for the full list of required python packages.

Install

First if you have not yet done so, install python 3.5+ and pipenv

sudo apt-get update && sudo apt-get install python3 python3-pip
sudo -H pip3 install -U pipenv

Clone this repo in your workspace and setup the python virtual environment
by running the following commands in the repository root folder

pipenv install --three

You can install development packages adding the flag --dev

The following step is to install TradingBot:

sudo ./install.py

All necessary files are copied in /opt/TradingBot by default.
It is recommended to add this path to your PATH environment variable.

The last step is to set file permissions for your user on the installed folders with the
following command:

sudo chown -R $USER: $HOME/.TradingBot

Setup

Login to your IG Dashboard

	Obtain an API KEY from the settings panel

	If using the demo account, create demo credentials

	Take note of your spread betting account ID (demo or real)

	Visit AlphaVantage website: https://www.alphavantage.co

	Request a free api key

	Insert these info in a file called .credentials

This must be in json format

{
 "username": "username",
 "password": "password",
 "api_key": "apikey",
 "account_id": "accountId",
 "av_api_key": "apiKey"
}

	Copy the .credentials file into the $HOME/.TradingBot/data folder

	Revoke permissions to read the file
.. code-block:: guess

cd data
sudo chmod 600 $HOME/.TradingBot/data/.credentials

Market source

There are different ways to define which markets to analyse with TradinbgBot. You can select your preferred option in the config.json file with the market_source parameter:

	Local file

You can create a file epic_ids.txt containg IG epics of the companies you want to monitor.
You need to copy this file into the data folder.

	Watchlist

You can use an IG watchlist, TradingBot will analyse every market added to the selected watchlist

	API

TradingBot navigates the IG markets dynamically using the available API call to fetch epic ids.

Configuration file

The config.json file is in the config folder and it contains several configurable parameter to personalise
how TradingBot work. These are the description of each parameter:

General

	max_account_usable: The maximum percentage of account funds to use (A safe value is around 50%)

	time_zone: The timezone to use (i.e. ‘Europe/London)

	enable_log: Enable the log in a file rather than on stdout

	log_file: Define the full file path for the log file to use, if enabled. {home} and {timestamp} placeholders are replaced with the user home directory and the timestamp when TradingBot started

	debug_log: Enable the debug level in the logging

	credentials_filepath: Filepath for the .credentials file

	market_source: The source to use to fetch the market ids. Available values as explained above are: [list, watchlist, api]

	epic_ids_filepath: The full file path for the local file containing the list of epic ids

	watchlist_name: The watchlist name to use as market source, if selected

	active_strategy: The strategy name to use. Must match one of the names in the Strategies section below

IG Interface

	order_type: The IG order type (MARKET, LIMIT, etc.). Do NOT change it

	order_size: The size of the spread bets

	order_expiry: The order expiry (DFB). Do NOT change it

	order_currency: The currency of the order (For UK shares leave it as GBP)

	order_force_open: Force to open the orders

	use_g_stop: Use guaranteed stops. Read IG terms for more info about them.

	use_demo_account: Trade on the DEMO IG account. If enabled remember to setup the demo account credentials too

	controlled_risk: Enable the controlled risk stop loss calculation. Enable only if you have a controlled risk account.

	paper_trading: Enable the paper trading. No real trades will be done on the IG account.

Alpha Vantage

	enable: Enable the use of AlphaVantage API

	api_timeout: Timeout in seconds between each API call

Strategies

Settings specific for each strategy

SimpleMACD

	spin_interval: Override the Strategies value

	max_spread_perc: Spread percentage to filter markets with high spread

	limit_perc: Limit percentage to take profit for each trade

	stop_perc: Stop percentage to stop any loss

Start TradingBot

You can start TradingBot in your current terminal

/opt/TradingBot/src/TradingBot.py

or you can start it in detached mode, letting it run in the background

nohup /opt/TradingBot/src/TradingBot.py >/dev/null 2>&1 &

Close all the open positions

/opt/TradingBot/src/TradingBot.py -c

Stop TradingBot

To stop a TradingBot instance running in the background

ps -ef | grep TradingBot | xargs kill -9

Test

You can run the test from the workspace with:

pipenv run pytest

Documentation

The Sphinx documentation contains further details about each TradingBot module
with source code documentation of each class member.
Explanation is provided regarding how to create your own Strategy and how to integrate
it with the system.

Read the documentation at:

https://tradingbot.readthedocs.io

You can build it locally with:

pipenv run sphinx-build -nWT -b html doc doc/_build/html

The generated html files will be in doc/_build/html.

Automate

NOTE: TradingBot monitors the market opening hours and suspend the trading when the market is closed. Generally you should NOT need a cron job!

You can set up the crontab job to run and kill TradinBot at specific times.
The only configuration required is to edit the crontab file adding the preferred schedule:

crontab -e

As an example this will start TradingBot at 8:00 in the morning and will stop it at 16:35 in the afternoon, every week day (Mon to Fri):

00 08 * * 1-5 /opt/TradingBot/src/TradingBot.py
35 16 * * 1-5 kill -9 $(ps | grep "/opt/TradingBot/src/TradingBot.py" | grep -v grep | awk '{ print $1 }')

NOTE: Remember to set the correct timezone in your machine!

Docker

You can run TradingBot in a Docker container (https://docs.docker.com/).
First you need to build the Docker image used by TradingBot:

./docker_run.sh build

Once the image is built you can install TradingBot and then run it in a Docker container:

./docker_run.sh start

The container will be called dkr_trading_bot and the logs will still be stored in the configured folder in the host machine. By default $HOME/.TradingBot/log.

Check the Dockerfile and the docker_run.sh for more details

To stop the TradingBot container:

docker kill dkr_trading_bot

If you need to start a bash shell into a running container

docker exec -it dkr_trading_bot bash

Contributing

Any contribution or suggestion is welcome, please follow the suggested workflow.

Pull Requests

To add a new feature or to resolve a bug, create a feature branch from the
develop branch.

Commit your changes and if possible add unit/integration test cases.
Eventually push your branch and create a Pull Request against develop.

If you instead find problems or you have ideas and suggestions for future
improvements, please open an Issue. Thanks for the support!

1. System Overview

TradingBot is a python program with the goal to automate the trading
of stocks in the London Stock Exchange market.
It is designed around the idea that to trade in the stock market
you need a strategy: a strategy is a set of rules that define the
conditions where to buy, sell or hold a certain market.
TradingBot design lets the user implement a custom strategy
without the trouble of developing all the boring stuff to make it work.

The following sections give an overview of the main components that compose
TradingBot.

1.1. TradingBot

TradingBot is the main entiy used to initialised all the
components that will be used during the main routine.
It reads the configuration file and the credentials file, it creates the
configured strategy instance, the broker interface and it handle the
processing of the markets with the active strategy.

1.2. Broker interface

TradingBot requires an interface with an executive broker in order to open
and close trades in the market.
The broker interface is initialised in the TradingBot module and
it should be independent from its underlying implementation.

At the current status, the only supported broker is IGIndex. This broker
provides a very good set of API to analyse the market and manage the account.
TradingBot makes also use of other 3rd party services to fetch market data such
as price snapshot or technical indicators.

1.3. Strategy

The Strategy is the core of the TradingBot system.
It is a generic template class that can be extended with custom functions to
execute trades according to the personalised strategy.

1.3.1. How to use your own strategy

Anyone can create a new strategy from scratch in a few simple steps.
With your own strategy you can define your own set of rules
to decide whether to buy, sell or hold a specific market.

	Setup your development environment (see TradingBot)

	Create a new python module inside the Strategy folder :

cd Strategies
touch my_strategy.py

	Edit the file and add a basic strategy template like the following:

import os
import inspect
import sys
import logging

Required for correct import path
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)

from Interfaces.Broker import Interval
from .Strategy import Strategy
from Utility.Utils import Utils, TradeDirection
Import any other required module

class my_strategy(Strategy): # Extends Strategy module
 """
 Description of the strategy
 """
 def read_configuration(self, config):
 # Read from the config json and store config parameters
 pass

 def initialise(self):
 # Initialise the strategy
 pass

 def get_price_settings(self):
 """
 Returns the price settings required by the strategy
 """
 # As an example, this means the strategy needs 50 data point of
 # of past prices from the 1-hour chart of the market
 # Return a list of tuple
 return [(Interval.HOUR, 50)]

 def find_trade_signal(self, market, prices):
 # Here is where you want to implement your own code!
 # The market instance provide information of the market to analyse while
 # the prices dictionary contains the required price datapoints
 # Returns the trade direction, stop level and limit level
 # As an examle:
 return TradeDirection.BUY, 90, 150

 def get_seconds_to_next_spin(self):
 # Return the amount of seconds between each spin of the strategy
 # Each spin analyses all the markets in a list/watchlist
 # Some strategies might require to run once a day, while other might
 # need to run continuosly, here you can make your decision

	Add the implementation for these functions:

	read_configuration: config is the json object loaded from the config.json file

	initialise: initialise the strategy or any internal members

	get_price_settings: define the required past price datapoints

	find_trade_signal: it is the core of your custom strategy, here you can use the broker interface to decide if trade the given epic

	get_seconds_to_next_spin: the find_trade_signal is called for every epic requested. After that TradingBot will wait for the amount of seconds defined in this function

	Strategy parent class provides a Broker type internal member that
can be accessed with self.broker. This member is the TradingBot broker
interface and provide functions to fetch market data, historic prices and
technical indicators. See the Modules section for more details.

	Strategy parent class provides access to another internal member that
list the current open position for the configured account. Access it with
self.positions.

	Edit the StrategyFactory module inporting the new strategy and adding
its name to the StrategyNames enum. Then add it to the make function

	28
29
30
31
32
33
34
35
36

	 def make_strategy(self, strategy_name):
 if strategy_name == StrategyNames.SIMPLE_MACD.value:
 return SimpleMACD(self.config, self.broker)
 elif strategy_name == StrategyNames.FAIG.value:
 return FAIG_iqr(self.config, self.broker)
 elif strategy.name == StrateyNames.MY_STRATEGY.value:
 return MY_STRATEGY(self.config, self.broker)
 else:
 logging.error('Impossible to create strategy {}. It does not exist'.format(strategy_name))

	Edit the config.json adding a new section for your strategy parameters

	Create a unit test for your strategy

	Share your strategy creating a Pull Request :)

2. Modules

TradingBot is composed by different modules organised by their nature.
Each section of this document provide a description of the module meaning
along with the documentation of its internal members.

2.1. TradingBot

2.2. Interfaces

The Interfaces module contains all those interfaces with external
services used by TradingBot.
The Broker class is the wrapper of all the trading services and provides
the main interface for the strategies to access market data and perform
trades.

2.2.1. IGInterface

2.2.2. AVInterface

2.2.2.1. Enums

2.2.3. Broker

2.2.3.1. Enums

2.2.4. Market

	
class Interfaces.Market.Market

	Represent a tradable market with latest price information

2.2.5. MarketProvider

	
class Interfaces.MarketProvider.MarketProvider(config, broker)

	Provide markets from different sources based on configuration. Supports
market lists, dynamic market exploration or watchlists

	
get_market_from_epic(epic)

	Given a market epic id returns the related market snapshot

	
next()

	Return the next market from the configured source

	
reset()

	Reset internal market pointer to the beginning

2.2.5.1. Enums

	
class Interfaces.MarketProvider.MarketSource

	Available market sources: local file list, watch list, market navigation
through API, etc.

2.3. Strategies

The Strategies module contains the strategies used by TradingBot to
analyse the markets. The Strategy class is the parent from where
any custom strategy must inherit from.
The other modules described here are strategies available in TradingBot.

2.3.1. Strategy

2.3.2. StrategyFactory

2.3.3. SimpleMACD

2.3.4. Weighted Average Peak Detection

2.4. Utils

Common utility classes and methods

2.4.1. Utils

2.4.2. Enums

2.4.3. Exceptions

3. Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

3.1. [1.1.0] - 2019-09-01

3.1.1. Changed

	Replaced bash script with python

	Moved sources in src installation folder

	Corrected IGInterface numpy dependency

	Added Pipenv integration

	Exported logic from Custom Strategy to simplify workflow

	Added dev-requirements.txt for retro compatibility

	Updated Sphinx documentation

3.2. [1.0.1] - 2019-05-09

3.2.1. Changed

	Updated renovate configuration

3.3. [1.0.0] - 2019-04-21

3.3.1. Added

	Initial release

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 Interfaces	

 	
 	
 Interfaces.Market	

 	
 	
 Interfaces.MarketProvider	

Index

 G
 | I
 | M
 | N
 | R

G

 	
 	get_market_from_epic() (Interfaces.MarketProvider.MarketProvider method)

I

 	
 	Interfaces.Market (module)

 	
 	Interfaces.MarketProvider (module)

M

 	
 	Market (class in Interfaces.Market)

 	
 	MarketProvider (class in Interfaces.MarketProvider)

 	MarketSource (class in Interfaces.MarketProvider)

N

 	
 	next() (Interfaces.MarketProvider.MarketProvider method)

R

 	
 	reset() (Interfaces.MarketProvider.MarketProvider method)

 nav.xhtml

 Table of Contents

 		
 TradingBot’s documentation

 		
 System Overview

 		
 TradingBot

 		
 Broker interface

 		
 Strategy

 		
 How to use your own strategy

 		
 Modules

 		
 TradingBot

 		
 Interfaces

 		
 IGInterface

 		
 AVInterface

 		
 Broker

 		
 Market

 		
 MarketProvider

 		
 Strategies

 		
 Strategy

 		
 StrategyFactory

 		
 SimpleMACD

 		
 Weighted Average Peak Detection

 		
 Utils

 		
 Utils

 		
 Enums

 		
 Exceptions

 		
 Changelog

 		
 [1.1.0] - 2019-09-01

 		
 Changed

 		
 [1.0.1] - 2019-05-09

 		
 Changed

 		
 [1.0.0] - 2019-04-21

 		
 Added

_static/file.png

_static/minus.png

_static/plus.png

