

TradingBot’s documentation

Introduction

TradingBot is an autonomous trading system that uses customised strategies to
trade in the London Stock Exchange market.
This documentation provides an overview of the system, explaining how to create
new trading strategies and how to integrate them with TradingBot.
Explore the next sections for a detailed documentation of each module too.

	1. System Overview
	1.1. TradingBot

	1.2. Broker interface

	1.3. Strategy

	2. Modules
	2.1. TradingBot

	2.2. Interfaces

	2.3. Strategies

	2.4. Utils

	3. Changelog
	3.1. [1.0.0] - 2019-04-21

TradingBot

[image: Build Status]
 [https://travis-ci.com/ilcardella/TradingBot][image: Documentation Status]
 [https://tradingbot.readthedocs.io/en/latest/?badge=latest]This is an attempt to create an autonomous market trading script using the IG
REST API and any other available data source for market prices.

TradingBot is meant to be a “forever running” process that keeps
analysing the markets and taking actions whether the conditions are met.
It is halfway from an academic project and a real useful piece of
software, I guess I will see how it goes :)

The main goal of this project is to provide the capability to
write a custom trading strategy with the minimum effort.
TradingBot handle all the boring stuff.

All the credits for the FAIG_iqr strategy goes to GitHub user @tg12
who is the creator of the first script version and gave me a good
starting point for this project. Thank you.

Dependencies

	Python 3.4+

View file requirements.txt for the full list of dependencies.

Install

TradingBot can be controlled by the trading_bot_ctl shell script which provides several commands to perform different actions.
After cloning this repo, to install TradingBot simply run:

sudo ./trading_bot_ctl install

The required dependencies will be installed and all necessary files installed in /opt/TradingBot by default. It is recommended to add this path to your PATH environment variable.

The last step is to set file permissions on the installed folders for your user with the following command:

sudo chown -R $USER: $HOME/.TradingBot

Setup

Login to your IG Dashboard

	Obtain an API KEY from the settings panel

	If using the demo account, create demo credentials

	Take note of your spread betting account ID (demo or real)

	Visit AlphaVantage website: https://www.alphavantage.co

	Request a free api key

	Insert these info in a file called .credentials

This must be in json format

{
 "username": "username",
 "password": "password",
 "api_key": "apikey",
 "account_id": "accountId",
 "av_api_key": "apiKey"
}

	Copy the .credentials file in the data folder

	Revoke permissions to read the file if you are paranoid
.. code-block:: guess

cd data
sudo chmod 600 .credentials

Market source

There are different ways to define which markets to analyse with TradinbgBot. You can select your preferred option in the config.json file with the market_source parameter:

	Local file

You can create a file epic_ids.txt containg IG epics of the companies you want to monitor.
You need to copy this file into the data folder.

	Watchlist

You can use an IG watchlist, TradingBot will analyse every market added to the selected watchlist

	API

TradingBot navigates the IG markets dynamically using the available API call to fetch epic ids.

Configuration file

The config.json file is in the config folder and it contains several configurable parameter to personalise
how TradingBot work. These are the description of each parameter:

General

	max_account_usable: The maximum percentage of account funds to use (A safe value is around 50%)

	time_zone: The timezone to use (i.e. ‘Europe/London)

	enable_log: Enable the log in a file rather than on stdout

	log_file: Define the full file path for the log file to use, if enabled. {home} and {timestamp} placeholders are replaced with the user home directory and the timestamp when TradingBot started

	debug_log: Enable the debug level in the logging

	credentials_filepath: Filepath for the .credentials file

	market_source: The source to use to fetch the market ids. Available values are explained in the Setup section below.

	epic_ids_filepath: The full file path for the local file containing the list of epic ids

	watchlist_name: The watchlist name to use as market source, if selected

	active_strategy: The strategy name to use. Must match one of the names in the Strategies section below

IG Interface

	order_type: The IG order type (MARKET, LIMIT, etc.). Do NOT change it

	order_size: The size of the spread bets

	order_expiry: The order expiry (DFB). Do NOT change it

	order_currency: The currency of the order (For UK shares leave it as GBP)

	order_force_open: Force to open the orders

	use_g_stop: Use guaranteed stops. Read IG terms for more info about them.

	use_demo_account: Trade on the DEMO IG account. If enabled remember to setup the demo account credentials too

	controlled_risk: Enable the controlled risk stop loss calculation. Enable only if you have a controlled risk account.

	paper_trading: Enable the paper trading. No real trades will be done on the IG account.

Alpha Vantage

	enable: Enable the use of AlphaVantage API

	api_timeout: Timeout in seconds between each API call

Strategies

Settings specific for each strategy

SimpleMACD

	spin_interval: Override the Strategies value

	max_spread_perc: Spread percentage to filter markets with high spread

	limit_perc: Limit percentage to take profit for each trade

	stop_perc: Stop percentage to stop any loss

Start TradingBot

./trading_bot_ctl start

Close all the open positions

./trading_bot_ctl close_positions

Stop TradingBot

./trading_bot_ctl stop

Test

If you have setup a virtual environment you can run the test by running pytest from the project root folder.

You can run the test from a clean environment with:

./trading_bot_ctl test

You can run the test in Docker containers against different python versions:

./trading_bot_ctl test_docker

Documentation

The Sphinx documentation contains further details about each TradingBot module
with source code documentation of each class member.
Explanation is provided regarding how to create your own Strategy and how to integrate
it with the system.

Read the documentation at:

https://tradingbot.readthedocs.io

You can build it locally with:

./trading_bot_ctl docs

The generated html files will be in doc/_build/html.

Automate

NOTE: TradingBot monitors the market opening hours and suspend the trading when the market is closed. Generally you should NOT need a cron job!

You can set up the crontab job to run and kill TradinBot at specific times.
The only configuration required is to edit the crontab file adding the preferred schedule:

crontab -e

As an example this will start TradingBot at 8:00 in the morning and will stop it at 16:35 in the afternoon, every week day (Mon to Fri):

00 08 * * 1-5 /.../TradingBot/trading_bot_ctl start
35 16 * * 1-5 /.../TradingBot/trading_bot_ctl stop

NOTE: Remember to set the correct timezone in your machine!

Docker

You can run TradingBot in a Docker container (https://docs.docker.com/):

./trading_bot_ctl start_docker

The container will be called dkr_trading_bot and the logs will still be stored in the configured folder in the host machine. By default ~/.TradingBot/log.

To stop TradingBot:

./trading_bot_ctl stop_docker

or just kill the container:

docker kill dkr_trading_bot

If you need to start a bash shell into the container

docker exec -it dkr_trading_bot bash

Contributing

I am really happy to receive any help so please just open a pull request
with your changes and I will handle it.

If you instead find problems or have ideas for future improvements open an Issue. Thanks for all the support!

1. System Overview

TradingBot is a python script with the goal to automate the trading
of stocks in the London Stock Exchange market.
It is designed around the idea that to trade in the stock market
you need a strategy: a strategy is a set of rules that define the
conditions where to buy, sell or hold a certain market.
TradingBot design lets the user implement a custom strategy
without the trouble of developing all the boring stuff to make it work.

The following sections give an overview of the main components that compose
TradingBot.

1.1. TradingBot

TradingBot is the main entiy used to initialised all the
components that will be used during the main routine.
It reads the configuration file and the credentials file, it creates the
configured strategy instance, the broker interface and it handle the
processing of the markets with the active strategy.

1.2. Broker interface

TradingBot requires an interface with an executive broker in order to open
and close trades in the market.
The broker interface is initialised in the TradingBot module and
it should be independent from its underlying implementation.

At the current status, the only supported broker is IGIndex. This broker
provides a very good set of API to analyse the market and manage the account.
TradingBot makes also use of other 3rd party services to fetch market data such
as price snapshot or technical indicators.

1.3. Strategy

The Strategy is the core of the TradingBot system.
It is a generic template class that can be extended with custom functions to
execute trades according to the personalised strategy.

1.3.1. How to use your own strategy

Anyone can create a new strategy from scratch in a few simple steps.
With your own strategy you can define your own set of rules
to decide whether to buy, sell or hold a specific market.

	Create a new python module inside the Strategy folder :

cd Strategies
touch my_strategy.py

	Edit the file and add a basic strategy template like the following:

import os
import inspect
import sys
import logging

Required for correct import path
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0,parentdir)

from .Strategy import Strategy
from Utils import Utils, TradeDirection
Import any other required module

class my_strategy(Strategy): # Extends Strategy module
 def __init__(self, config, broker):
 # Call parent constructor
 super().__init__(config, broker)

 def read_configuration(self, config):
 # Read from the config json and store config parameters

 def find_trade_signal(self, epic_id):
 # Given an IG epic decide the trade direction
 # Here is where you want to implement your own code!
 # return TradeDirection.XXX, stop_level, limit_level

 def get_seconds_to_next_spin(self):
 # Return the amount of seconds between each spin of the strategy
 # Each spin analyses all the markets in a list/watchlist

	Add the implementation for these functions:

	read_configuration: config is the json object loaded from the config.json file

	find_trade_signal: it is the core of your custom strategy, here you can use the broker interface to decide if trade the given epic

	get_seconds_to_next_spin: the find_trade_signal is called for every epic requested. After that TradingBot will wait for the amount of seconds defined in this function

	Strategy parent class provides a Broker type internal member that
can be accessed with self.broker. This member is the TradingBot broker
interface and provide functions to fetch market data, historic prices and
technical indicators. See the Modules section for more details.

	Edit the StrategyFactory module inporting the new strategy and adding
its name to the StrategyNames enum. Then add it to the make function

	28
29
30
31
32
33
34
35
36

	 def make_strategy(self, strategy_name):
 if strategy_name == StrategyNames.SIMPLE_MACD.value:
 return SimpleMACD(self.config, self.broker)
 elif strategy_name == StrategyNames.FAIG.value:
 return FAIG_iqr(self.config, self.broker)
 elif strategy.name == StrateyNames.MY_STRATEGY.value:
 return MY_STRATEGY(self.config, self.broker)
 else:
 logging.error('Impossible to create strategy {}. It does not exist'.format(strategy_name))

	Edit the config.json adding a new section for your strategy parameters

	Create a unit test for your strategy

	Share your strategy creating a Pull Request in GitHub :)

2. Modules

TradingBot is composed by different modules organised by their nature.
Each section of this document provide a description of the module meaning
along with the documentation of its internal members.

2.1. TradingBot

	
class TradingBot.TradingBot

	Class that initialise and hold references of main components like the
broker interface, the strategy or the epic_ids list

	
close_open_positions()

	Closes all the open positions in the account

	
init_trading_services(config, credentials)

	Create instances of the trading services required, such as web interface
for trading and fetch market data.

	config The configuration json

	credentials The credentials json

	return: An instance of Broker class initialised

	
load_epic_ids_from_local_file(filepath)

	Read a file from filesystem containing a list of epic ids.
The filepath is defined in config.json file
Returns a ‘list’ of strings where each string is a market epic

	
load_json_file(filepath)

	Load a JSON formatted file from the given filepath

	filepath The filepath including filename and extension

	Return a dictionary of the loaded json

	
process_epic_list(epic_list)

	Process the given list of epic ids, one by one to find new trades

	epic_list: list of epic ids as strings

	
process_market(epic)

	Process the givem epic using the defined strategy

	epic: string representing a market epic id

	Returns False if market is closed or if account reach maximum margin, otherwise True

	
process_market_exploration(node_id)

	Navigate the markets using IG API to fetch markets id dinamically

	node_id: The node id to navigate markets in

	
process_open_positions(positions)

	process the open positions to find closing trades

	positions: json object containing open positions

	Returns False if an error occurs otherwise True

	
process_trade(epic)

	Process a trade checking if it is a “close position” trade or a new action

	
process_watchlist(watchlist_name)

	Process the markets included in the given IG watchlist

	watchlist_name: IG watchlist name

	
read_configuration(config)

	Read the configuration from the config json

	
setup_logging()

	Setup the global logging settings

	
start(argv)

	Starts the TradingBot

	
wait_for_next_market_opening()

	Sleep until the next market opening. Takes into account weekends
and bank holidays in UK

2.2. Interfaces

The Interfaces module contains all those interfaces with external
services used by TradingBot.
The Broker class is the wrapper of all the trading services and provides
the main interface for the strategies to access market data and perform
trades.

2.2.1. IGInterface

	
class Interfaces.IGInterface.IGInterface(config, credentials)

	IG broker interface class, provides functions to use the IG REST API

	
authenticate(credentials)

	Authenticate the IGInterface instance with the given credentials

	credentials: json object containing username, passowrd, default account and api key

	Returns False if an error occurs otherwise True

	
close_all_positions()

	Try to close all the account open positions.

	Returns False if an error occurs otherwise True

	
close_position(position)

	Close the given market position

	position: position json object obtained from IG API

	Returns False if an error occurs otherwise True

	
confirm_order(dealRef)

	Confirm an order from a dealing reference

	dealRef: dealing reference to confirm

	Returns False if an error occurs otherwise True

	
get_account_balances()

	Returns a tuple (balance, deposit) for the account in use

	Returns (None,None) if an error occurs otherwise (balance, deposit)

	
get_account_used_perc()

	Fetch the percentage of available balance is currently used

	Returns the percentage of account used over total available amount

	
get_market_info(epic_id)

	Returns info for the given market including a price snapshot

	epic_id: market epic as string

	Returns None if an error occurs otherwise the json returned by IG API

	
get_markets_from_watchlist(name)

	Get the list of markets included in the watchlist

	name: name of the watchlist

	
get_open_positions()

	Returns the account open positions in an json object

	Returns the json object returned by the IG API

	
get_positions_map()

	Returns a dict containing the account open positions in the form
{string: int} where the string is defined as ‘marketId-tradeDirection’ and
the int is the trade size

	Returns None if an error occurs otherwise a dict(string:int)

	
get_prices(epic_id, interval, data_range)

	Returns past prices for the given epic

	epic_id: market epic as string

	interval: resolution of the time series: minute, hours, etc.

	data_range: amount of datapoint to fetch

	Returns None if an error occurs otherwise the json object returned by IG API

	
get_watchlist(id)

	Get the watchlist info

	id: id of the watchlist. If empty id is provided, the
function returns the list of all the watchlist in the account

	
http_get(url)

	Perform an HTTP GET request to the url.
Return the json object returned from the API if 200 is received
Return None if an error is received from the API

	
macd_dataframe(epic, interval)

	Return a datafram with MACD data for the requested market

	
navigate_market_node(node_id)

	Navigate the market node id

	Returns the json representing the market node

	
read_configuration(config)

	Read the configuration from the config json

	
set_default_account(accountId)

	Sets the IG account to use

	accountId: String representing the accound id to use

	Returns False if an error occurs otherwise True

	
trade(epic_id, trade_direction, limit, stop)

	Try to open a new trade for the given epic

	epic_id: market epic as string

	trade_direction: BUY or SELL

	limit: limit level

	stop: stop level

	Returns False if an error occurs otherwise True

2.2.2. AVInterface

	
class Interfaces.AVInterface.AVInterface(apiKey, config)

	AlphaVantage interface class, provides methods to call AlphaVantage API
and return the result in useful format handling possible errors.

	
daily(marketId)

	Calls AlphaVantage API and return the Daily time series for the given market

	marketId: string representing an AlphaVantage compatible market id

	Returns None if an error occurs otherwise the pandas dataframe

	
get_prices(market_id, interval)

	Return the price time series of the requested market with the interval
granularity. Return None if the interval is invalid

	
intraday(marketId, interval)

	Calls AlphaVantage API and return the Intraday time series for the given market

	marketId: string representing an AlphaVantage compatible market id

	interval: string representing an AlphaVantage interval type

	Returns None if an error occurs otherwise the pandas dataframe

	
macd(marketId, interval)

	Calls AlphaVantage API and return the MACDEXT tech indicator series for the given market

	marketId: string representing an AlphaVantage compatible market id

	interval: string representing an AlphaVantage interval type

	Returns None if an error occurs otherwise the pandas dataframe

	
macdext(marketId, interval)

	Calls AlphaVantage API and return the MACDEXT tech indicator series for the given market

	marketId: string representing an AlphaVantage compatible market id

	interval: string representing an AlphaVantage interval type

	Returns None if an error occurs otherwise the pandas dataframe

	
quote_endpoint(market_id)

	Calls AlphaVantage API and return the Quote Endpoint data for the given market

	market_id: string representing the market id to fetch data of

	Returns None if an error occurs otherwise the pandas dataframe

	
weekly(marketId)

	Calls AlphaVantage API and return the Weekly time series for the given market

	marketId: string representing an AlphaVantage compatible market id

	Returns None if an error occurs otherwise the pandas dataframe

2.2.3. Broker

	
class Interfaces.Broker.Broker(config, services)

	This class provides a template interface for all those broker related
actions/tasks wrapping the actual implementation class internally

	
close_all_positions()

	IG INDEX API ONLY
Attempt to close all the current open positions

	
close_position(position)

	IG INDEX API ONLY
Attempt to close the requested open position

	
get_account_used_perc()

	IG INDEX API ONLY
Returns the account used value in percentage

	
get_market_from_watchlist(watchlist_name)

	IG INDEX API ONLY
Return a name list of the markets in the required watchlist

	
get_market_info(epic)

	IG INDEX API ONLY
Return the last available snapshot of the requested market as a dict:
- data = {‘market_id’: <value>, ‘bid’: <value>,’offer’: <value>, ‘stop_distance_min’: <value>}

	
get_open_positions()

	IG INDEX API ONLY
Returns the current open positions

	
get_prices(epic, market_id, interval, data_range)

	
	Return historic price of the requested market as a dictionary:
	
	data = {‘high’: [], ‘low’: [], ‘close’: [], ‘volume’: []}

	
macd_dataframe(epic, market_id, interval)

	Return a pandas dataframe containing MACD technical indicator
for the requested market with requested interval

	
navigate_market_node(node_id)

	IG INDEX API ONLY
Return the children nodes of the requested node

	
to_av_interval(interval)

	Convert the Broker Interval to AlphaVantage compatible intervals.
Return the converted interval or None if a conversion is not available

	
trade(epic, trade_direction, limit, stop)

	IG INDEX API ONLY
Request a trade of the given market

2.3. Strategies

The Strategies module contains the strategies used by TradingBot to
analyse the markets. The Strategy class is the parent from where
any custom strategy must inherit from.
The other modules described here are strategies available in TradingBot.

2.3.1. Strategy

	
class Strategies.Strategy.Strategy(config, broker)

	Generic strategy template to use as a parent class for custom strategies.
Provide safety checks for new trades and handling of open positions.

	
find_trade_signal(epic_id)

	Must override

	
get_seconds_to_next_spin()

	Must override

	
read_configuration(config)

	Must override

2.3.2. StrategyFactory

	
class Strategies.StrategyFactory.StrategyFactory(config, broker)

	Factory class to create instances of Strategies. The class provide an
interface to instantiate new objects of a given Strategy name

	
make_strategy(strategy_name)

	Create and return an instance of the Strategy class specified by
the strategy_name

	strategy_name: name of the strategy as defined in the json
config file

	Returns an instance of the requested Strategy or None if an
error occurres

2.3.3. SimpleMACD

	
class Strategies.SimpleMACD.SimpleMACD(config, broker)

	Strategy that use the MACD technical indicator of a market to decide whether
to buy, sell or hold.
Buy when the MACD cross over the MACD signal.
Sell when the MACD cross below the MACD signal.

	
calculate_stop_limit(tradeDirection, current_offer, current_bid, limit_perc, stop_perc)

	Calculate the stop and limit levels from the given percentages

	
find_trade_signal(epic_id)

	Calculate the MACD of the previous days and find a cross between MACD
and MACD signal

	epic_id: market epic as string

	Returns TradeDirection, limit_level, stop_level or TradeDirection.NONE, None, None

	
get_seconds_to_next_spin()

	Calculate the amount of seconds to wait for between each strategy spin

	
read_configuration(config)

	Read the json configuration

2.3.4. Weighted Average Peak Detection

	
class Strategies.WeightedAvgPeak.WeightedAvgPeak(config, broker)

	All credits of this strategy goes to GitHub user @tg12.

	
find_trade_signal(epic_id)

	TODO add description of strategy key points

	
get_seconds_to_next_spin()

	Must override

	
peakdet(v, delta, x=None)

	Converted from MATLAB script at http://billauer.co.il/peakdet.html

Returns two arrays

function [maxtab, mintab]=peakdet(v, delta, x)
%PEAKDET Detect peaks in a vector
% [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local
% maxima and minima (“peaks”) in the vector V.
% MAXTAB and MINTAB consists of two columns. Column 1
% contains indices in V, and column 2 the found values.
%
% With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the indices
% in MAXTAB and MINTAB are replaced with the corresponding
% X-values.
%
% A point is considered a maximum peak if it has the maximal
% value, and was preceded (to the left) by a value lower by
% DELTA.

% Eli Billauer, 3.4.05 (Explicitly not copyrighted).
% This function is released to the public domain; Any use is allowed.

	
read_configuration(config)

	Read the json configuration

	
weighted_avg_and_std(values, weights)

	Return the weighted average and standard deviation.

values, weights – Numpy ndarrays with the same shape.

2.4. Utils

	
class Utils.Utils

	Utility class containing static methods to perform simple general actions

	
static get_seconds_to_market_opening(from_time)

	Return the amount of seconds from now to the next market opening,
taking into account UK bank holidays and weekends

	
static humanize_time(secs)

	Convert the given time (in seconds) into a readable format hh:mm:ss

	
static is_between(time, time_range)

	Return True if time is between the time_range. time must be a string.
time_range must be a tuple (a,b) where a and b are strings in format ‘HH:MM’

	
static is_market_open(timezone)

	Return True if the market is open, false otherwise

	timezone: string representing the timezone

	
static midpoint(p1, p2)

	Return the midpoint

	
static percentage(part, whole)

	Return the percentage value of the part on the whole

	
static percentage_of(percent, whole)

	Return the value of the percentage on the whole

3. Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

3.1. [1.0.0] - 2019-04-21

3.1.1. Added

	Initial release

 Python Module Index

 i |
 s |
 t |
 u

 		 	

 		
 i	

 	[image: -]
 	
 Interfaces	

 	
 	
 Interfaces.AVInterface	

 	
 	
 Interfaces.Broker	

 	
 	
 Interfaces.IGInterface	

 		 	

 		
 s	

 	[image: -]
 	
 Strategies	

 	
 	
 Strategies.SimpleMACD	

 	
 	
 Strategies.Strategy	

 	
 	
 Strategies.StrategyFactory	

 	
 	
 Strategies.WeightedAvgPeak	

 		 	

 		
 t	

 	
 	
 TradingBot	

 		 	

 		
 u	

 	
 	
 Utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	authenticate() (Interfaces.IGInterface.IGInterface method)

 	
 	AVInterface (class in Interfaces.AVInterface)

B

 	
 	Broker (class in Interfaces.Broker)

C

 	
 	calculate_stop_limit() (Strategies.SimpleMACD.SimpleMACD method)

 	close_all_positions() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	
 	close_open_positions() (TradingBot.TradingBot method)

 	close_position() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	confirm_order() (Interfaces.IGInterface.IGInterface method)

D

 	
 	daily() (Interfaces.AVInterface.AVInterface method)

F

 	
 	find_trade_signal() (Strategies.SimpleMACD.SimpleMACD method)

 	(Strategies.Strategy.Strategy method)

 	(Strategies.WeightedAvgPeak.WeightedAvgPeak method)

G

 	
 	get_account_balances() (Interfaces.IGInterface.IGInterface method)

 	get_account_used_perc() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	get_market_from_watchlist() (Interfaces.Broker.Broker method)

 	get_market_info() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	get_markets_from_watchlist() (Interfaces.IGInterface.IGInterface method)

 	get_open_positions() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	
 	get_positions_map() (Interfaces.IGInterface.IGInterface method)

 	get_prices() (Interfaces.AVInterface.AVInterface method)

 	(Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	get_seconds_to_market_opening() (Utils.Utils static method)

 	get_seconds_to_next_spin() (Strategies.SimpleMACD.SimpleMACD method)

 	(Strategies.Strategy.Strategy method)

 	(Strategies.WeightedAvgPeak.WeightedAvgPeak method)

 	get_watchlist() (Interfaces.IGInterface.IGInterface method)

H

 	
 	http_get() (Interfaces.IGInterface.IGInterface method)

 	
 	humanize_time() (Utils.Utils static method)

I

 	
 	IGInterface (class in Interfaces.IGInterface)

 	init_trading_services() (TradingBot.TradingBot method)

 	Interfaces.AVInterface (module)

 	Interfaces.Broker (module)

 	
 	Interfaces.IGInterface (module)

 	intraday() (Interfaces.AVInterface.AVInterface method)

 	is_between() (Utils.Utils static method)

 	is_market_open() (Utils.Utils static method)

L

 	
 	load_epic_ids_from_local_file() (TradingBot.TradingBot method)

 	
 	load_json_file() (TradingBot.TradingBot method)

M

 	
 	macd() (Interfaces.AVInterface.AVInterface method)

 	macd_dataframe() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	
 	macdext() (Interfaces.AVInterface.AVInterface method)

 	make_strategy() (Strategies.StrategyFactory.StrategyFactory method)

 	midpoint() (Utils.Utils static method)

N

 	
 	navigate_market_node() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

P

 	
 	peakdet() (Strategies.WeightedAvgPeak.WeightedAvgPeak method)

 	percentage() (Utils.Utils static method)

 	percentage_of() (Utils.Utils static method)

 	process_epic_list() (TradingBot.TradingBot method)

 	
 	process_market() (TradingBot.TradingBot method)

 	process_market_exploration() (TradingBot.TradingBot method)

 	process_open_positions() (TradingBot.TradingBot method)

 	process_trade() (TradingBot.TradingBot method)

 	process_watchlist() (TradingBot.TradingBot method)

Q

 	
 	quote_endpoint() (Interfaces.AVInterface.AVInterface method)

R

 	
 	read_configuration() (Interfaces.IGInterface.IGInterface method)

 	(Strategies.SimpleMACD.SimpleMACD method)

 	(Strategies.Strategy.Strategy method)

 	(Strategies.WeightedAvgPeak.WeightedAvgPeak method)

 	(TradingBot.TradingBot method)

S

 	
 	set_default_account() (Interfaces.IGInterface.IGInterface method)

 	setup_logging() (TradingBot.TradingBot method)

 	SimpleMACD (class in Strategies.SimpleMACD)

 	start() (TradingBot.TradingBot method)

 	Strategies.SimpleMACD (module)

 	
 	Strategies.Strategy (module)

 	Strategies.StrategyFactory (module)

 	Strategies.WeightedAvgPeak (module)

 	Strategy (class in Strategies.Strategy)

 	StrategyFactory (class in Strategies.StrategyFactory)

T

 	
 	to_av_interval() (Interfaces.Broker.Broker method)

 	trade() (Interfaces.Broker.Broker method)

 	(Interfaces.IGInterface.IGInterface method)

 	
 	TradingBot (class in TradingBot)

 	(module)

U

 	
 	Utils (class in Utils)

 	(module)

W

 	
 	wait_for_next_market_opening() (TradingBot.TradingBot method)

 	weekly() (Interfaces.AVInterface.AVInterface method)

 	
 	weighted_avg_and_std() (Strategies.WeightedAvgPeak.WeightedAvgPeak method)

 	WeightedAvgPeak (class in Strategies.WeightedAvgPeak)

 nav.xhtml

 Table of Contents

 		
 TradingBot’s documentation

 		
 System Overview

 		
 TradingBot

 		
 Broker interface

 		
 Strategy

 		
 How to use your own strategy

 		
 Modules

 		
 TradingBot

 		
 Interfaces

 		
 IGInterface

 		
 AVInterface

 		
 Broker

 		
 Strategies

 		
 Strategy

 		
 StrategyFactory

 		
 SimpleMACD

 		
 Weighted Average Peak Detection

 		
 Utils

 		
 Changelog

 		
 [1.0.0] - 2019-04-21

 		
 Added

_static/file.png

_static/minus.png

_static/plus.png

